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II. PRELIMINARIES

Let R be the real line, and let B be the usual Borcl a-field on R. Let R be the two-sided

sequence space, and let B be the Borel o-field on R that is generated by the product topology

on R*. We consider a real-valued discrete-time process, {X,, -<n<-}, whose measure It° is

known and is defined on B*. We name {x, -OO<n<o) the nominal process , and we denote by

n-1
xn, --' o<n<,- ) data realizations generated by it. Let ' = R"(x I ) denote the optimal one-step

n- A
* mean-squared prediction operation, given the sequence realization x1n_ {x1 , l1/_n-1 ), when

{x, -<n<-,o) is generated by the nominal process. Then, if gn = g.(xn-) denotes some scalar

n-1
real-valued function on the sequence xI , we have:

.e(t, R) = inf en(t,g) (1)

-gn

E n- X 1n-1
Kn(X- )= X 1X -  (2)

where E { } denotes expectation with respect to the measure t 0 ' where
.4.

S X,= {X1 , l11n), and where,

A n-1 2
e.(4t, gn) E go{[X n - gn(X )] (3)

The expression in (3) is called the one-step prediction error induced by gn at t0 Let L

denote the class of all the scalar real-valued linear functions defined on R . Let then

L 1. n-I
= (xI ) be such that:

eC0 X)= inf e,(I',g. (4),. (4)
gI.

C.
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Then, R is called the optimal linear one-step mean squared prcdictor at ' given the
• • n-i

sequence realization n- , and generally,
I.

~~~~en(g'o Cn < e~'t' , (5)

n I n-1

If the measure ;.1 is Gaussian, then %,,(, ) A R (x 1 ), 'n, and (5) is then satisfied with

equality for all n. If Jt0 is non Gaussian, [hen (5) is generally a strict inequality.

0 The above summary corresponds to parametric one-step prediction; that is, it corresponds to

the case where the measure 1. that generates the data sequences is known. In this paper, we arc

concerned with the outlier model. Then, the observation process {Yn' -oo<n<oo) is generated by

three mutually independent processes; the nominal process (Xn,--O<n<,o) and two i.i.d.

processes {V , --O<nO<- and {Zn , -<n<-}, as follows:

Yn = (l-V)X + VnZn, n=...-l,O,l .... (6)

where the common distribution of the variables Z is unknown, and where IV, .-- <n<.)

* is a binary process. In particular, for some given e • O <l, the latter process is such that:

P(V k = 0) I-e:

P(Vk = 1) = e (7)

In the outlier model in (6), {Zn, --O<n<-) is called the contaminating process , and

(V n,-inf<n<,-) determines the contamination law. In the presence of the latter model, the
n-1

objective is prediction of the nominal datum x.. given the observation sequcnce Y, , for all n,

and the problem formalization is then clearly nonparametric. Let A± denote the measure of the

C observation process, and let (g,}n denote a sequence of one-step predictors, where

gn= g,,(y 1  .et usi then deline,

3
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C;

" (gA n-1 2
e(g E) ELI Xn-g"(Y )] (8)

In (8), en(t, gn) is the mean-squared error induced by the predictor gn, when the measure of the
observation process -Y"o<n<-)} is t, and where X is generated by the nominal process

(Yn' n

*whose measure is to. Clearly, e1(ito, gn) is then as in (3), and it represents the mean-squared

performance of the predictor gn at the nominal measure lt,, (that is, when outliers are absent).

Our objective is to design a sequence {gn} 2 , of predictors whose mean-squared

performance is stable in the presence of variations in the measure g. of the observation process

le I{Yn' -- <n<oo}. This stability corresponds to qualitative robustness, and is defined as follows:

Given i1>0, there exists 8>0, such that:

• lP(i.t, 9t)<8 implies 1 e(Io±, g,)-c(t, g) 1 <TI ; Vh

In the above definition, nHP denotes Prohorov distance with an appropriate distortion

measure p on data sequences, and sequences {gn} of operations that satisfy this stability are

called qualitatively robust at the measure go As found first in [13], and later in [1 ],[ 14], and [ 161,

for the sequence {gn) to be qualitatively robust, pointwise continuity and asymptotic continuity

in conjunction with boundness, are sufficient. In particular, it is sufficient that: g, is bounded for

all n, and:

n(A) Given finite n, given i1>0, given xi, there exists 5>0, such that,

n nnA-1 (, n (n

C Y1 :yn(Xlyl)=n Ixi-yil<Simplies Ign+1(xI)-gn+(y )I<.

i=l

(B) Given g,) stationary, given C>0, 71>0, there exist integers n, m, some 5>0, and for each

n>n 0 some A eR with gt0 ( I_,,, such that for each x eA and yn such that

ii, - l  i+m-1inf~c • #i : - (x ,y' )>c] < n(X) < 8 it is implied that I g+ I(x )-g, ,(y n)1 <

4
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Given a sequence {gn) of predictors which is qualitatively robust at the nominal measure

IX, its importait quantitative performance criteria are: (1) Its asymptotic mean-squared

performance at the nominal measure, limsupc (g. , g,). (2) Its breakdown point. (3) Its influence

function. The breakdown point and the influence function represent measures of resistance to

outliers, and their definitions are given below.

Consider the model in (6), and let then {Z} be a deterministic process with amplitude w;

* that is, P(Zn = w)= 1. Let then pr,, be the measure of the observation process {Y}. Given a

sequence {g} of predictors, we then define:

Influence Function of the sequence {gn}

A e(p.W. g) - c(p., g)
1(w) tim (9)

g - - E"
0-0

where,

A
* e(t,g) limsupe (.t, g,) (10)

provided the limit in (9) exists.

Breakdown Point of the sequence (g,)"

A .e* sup( c : sup c(4 g)<_IimsupE .X' )) (ii)

where c( L, -,) is dclined as in (10).

We note that the breakdown point is the maximun fJcqiucnty o indcpcndcnt outliers that

(,-o the prediction sequnLcc can tolerate asymptolically, wilhout lic'on ing usclcss, (that is,, bcorc the

observation sequences provide no information about the next proccss datum), wkhere the



amplitude of the outliers is arbitrary. Altermatively, we can define the breakdown point as

A 2
e*r supfe: timsupe(gi ,,g) l1imsupE (X" 1 (12)

If e(..W g) is symmetric in w about zero and is monotonically increasing in 1w I, then

C = _~ In general, e is defined in terms of a stronger condition than E, and hence

9 * < * (13)

A
The influence function represents tile slope of the function c(tCW g) - e(i,g) F,.,(w), atth

elm Fc={) point. F Cg (w) corresponds to the asymptotic mean-sqluared error increase induced by the

prediction scquren ~1 when from absence of outliers the environment shifts to c-frequency

and w-amiplitude u.ie occurrcncc.

*Tlie outlet iimodel in (6) can be generalized to i.i.d. sequences o~ rni-size blocks of outliers, as

follow's:

kmn km kin

* ~~~(k-)m+l (l-Vk)X(k-1)m+l + ...,lO,-...(14

where the sequence tVkk is as in (7), and where the Vector random variables (Z kin 1

are i.i.d. with unknown distribution. Let J±,,Wm denote the measure of the observation process

(Y n, when thle model in (14) is present, and when P(Z n = w) = 1. Then, given a sequence gn)o of

predictors, and definling eq ,) as in G0), the breakdown point, F , and the influence function,

, ,,w), that correspondI to thle outlier model in (14) are defined as follows:

E. SU JE sup 014g! Im EI (15)

6



c( trt ,g) - C(Ao, g)
I g'm(w) lim (16)

-:*

provided the limit in (16) exists. We also define e M by replacing supremum over w with lim

sup as in the case of (12).

I. OUTLIER RESISTANT PREDICTION OPERATIONS

We consider a stationary, zero mean, real-valued process {X,, -<n<-), with measure g.,
0 2

and E {X = < -. We also consider the outlier model in (14) for the observation process

(Y, -- <n<-}. We concentrate on the design of qualitatively robust and outlier resistant

4,- sequences {gn of one-step predictors for the process {X., -c<n<,,). Our methodology involves

two steps: (1) A saddle-point game formalization and solution for the predictors g : 25n!m+l.

(2) A qualitativcly robust generalization of the solutions in Step 1; for the predictors : • n>m+l.

* In the sequel, we will assume that both the nominal and the contaminating processes are

f n

absolutely continous. We will then denote by o(xt) the density function induced by the nominal
n nl

process at the vector point x ; we will denote by f(y') the density function induced by the

observation process at the vector point y,. We note that then, for n : 2 n_<m+l, the class Fn, of

density functions induced by the model in (14) is as follows:

n-I n-I n-I n-1 n-I n-

F f'f(y1  )-(1-)fo(yn )_0 Y ER f(Y )dy, 1) (17)
n-I

R

Construction of Prediction Operations - Step 1

C, Let us consider the model in (14) and one-stcp prediction based on observation sequences

n-1

with n : 2<"_in+l. Given such an n, we consider the following saddle point game, where

F is as in (17):

Find a pair, (f *, g *), of an observation density function and an one-step predictor, such

7
0(e
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that f *eF. and:

- *r r *;

"If -Fn en(f' gn * ) -<eo *'gn* ) <enor 'gn ) Ygn

In (18), the errors e(f, g) are as in (8), where the measure, g, has been substituted by the

corresponding density function, f.

Consider a pair, f '.g,'), of an observation density and a prediction operation, such that:

su infnr

U"(,fri): en"(f" gn') = supinfe , %) (19)
/rvF g.

n-I
From tile results in [151 we then conclude that if the operation g,,'=g'(yI ) is pointwisc

continuous and bounded, then (" g,) = (f* g*) and the pair is a unique solution of the game in

(lS). We now present a theorem whose proof is in the Appendix.

n-I T n-I
Theorem I Let the nominal profess be zero mean Gaussian. Let m0 (y1  ) = Bn1 y, denote

0 n-1
the optimal at the Gaussian process one-step predictor, when the observation sequence is yn

Let n 2<n_<m+l. Then, the pair U'', g.') in (19) is as follows:

o, n-I n-I . n-I -I

gn(Y 1 ) =m o(y n ).min(l, Xn I(Y 1 ) (20)

f ( n- I) nI -I IM ( n-I
f 1(Y1) )=(l-c)f(Yn )-max(l, X._lm(yl) (21)

t

R

Sinlc, thle operation in (20) is pointwise continuous and bounded, U' ' f *,and

the pair is a uniq.Ie solution ofhe game in O).I 'I

t -



V'C

When the nominal process is non Gaussian, the operation g' in (19) is generally not

SIIpointwisc continuous; thus, there is no guarantee then that it will satisfy the game in (18), and it is

generally qualitatively nonrobust. However, drawing from linear prediction in the absence of

outliers, we wiU adopt the operations in Theorem 1, for non Gaussian nominal proceses as well.

Specifically:
r. n-i I T n- I

Let the nominal process be zero mean stationary. Let ( 1 )= B nly I  denote the

optimal at the nominal process linear one-step predictor when the observation sequence is

* n-i
Yt  Let J(; denote density of the Gaussian process whose power spectral density is the

same as that of the nominal process, and whose mean is zero. Then, in the presence of

the model in (14), and for n : 2<nm+l, we adopt the following one step prediction
Ilt

operation:

n-I n-I rin-I Ig,(Y 1 ")=m(y ).min(l, X 1 mo(y1  )I - )

n -1 n-Xn- f G,(Yl ).max(l1 1_llmo(Y1 )1) (3-) -

'% R-- 1(23)

We note that for =0, the value of X'n-I is infinity and the operation g * becomes identical to

the optimal of the nominal linear one-step predictor. As e increases, n 1 decreases

monotonically, becoming zero at e=1.

Constriction of Prediction Operations - Step 2

In this part, we are concerned with the construction of qualitatively robust prediction

operations, for large dimensionalities of observation sequences. We point out that the operations

in (23) are qualitatively robust for finite such diniensionalitics only. Indeed, they satisfy

condition (A) in section II and are bounded, but they do not satisfy condition (B). At the same

( time, the outlier model in (12) does not allow for the lormalization of a saddle point game for

arbitrary data dimensionalitics, even when the nominal process is Gaussian. We will thus adopt

;19



an ad hoc approach.

Let (a (n ) jn denote me one-step prediction cocfficients of the nominal process, when n

n
obsrvation data arc available. That is, if rn(Y) dcnotcs thc optimal at fihe nominal linear one-

step predictor when the observation sequence is yI, then:

n
n (24mn (y l) a . yj (24 )

j=I

Let gbe as in (23). Then, we propose the following sequences, [G I*) and {G2,* of

one-step predictors:

Sequence IG *)

mn-I n- ;
G1 ,(y )=G, (yI )=,*(, 1 ) , for 2n+

i j-I

m gj+(yl) - gj+I , 0
Gn '-I G n I Z.) 0)j= 1 aji

n (n-1 ) gm+1(yj_,. .) g +l.Yjm+l 0
+ Y a (M(n-I){ + --- , for n>m+l (25)

j--Tn+1I atn

I +k

where (Yt 0) denotcs the sequence {y' Y+l .... Yt+k' 0}

SCuc1ce {G_ .*1

n-I Om n-I * n-I
G 2.(YI )=G,..(y, )=g ,, (Y1  ) , r2

10



* k * k-I

kqo,, n- ) g,,,+Y In*l ( - ,(2 -- g,, fonYmI (26)
k-i~ik-)

" n-1 &m n-1 (n-1).
G2.,,(y I  =G ,(y I )=yak ,

' k=l a -(In

I_ A n-1
O m t~~i1l1n1 - 0 vk  ,k.- --g~ (tI~n+ ,0

t[ + E a k  •,for n>m+l (26)

i--) k=t(i,n)-+1 lk-.-(i~n).

• where,

iA n-1

t(i,n) im+ n-1 - [f 'm (27.a)
m

[("' " 'Yl' 2'Y ' ' .... .YQ ] l j! t(,n)

'" " t n-(On) 1(O.n)-j* 10,0,0....0,0,0.,0,00...,( I j--0(2 .b

and

, { [Yr'Yl+I ... Y,Q,(I /<j I-/+m.-lI"J l ,'.-1O-t+1)m -

(Y, = [0,0,....0,0,0....01 j<t (27.c)

1. m

If the denominator of {'} of any term of (25) or if the dcnominator of [I of any term of (26) is

zero, then that term is not included in the sum.

We observe that the sequences [G, of (25) and {G,, of (26) degencrate to the sequencc

of the optimal at the nominal linear predictorswhen in me model in (14), c--4), (design in the

*. absence of outliers ). In addition, using a similar proof as in 1181, we can easily show that the

sequences (G1.n} and (G 21} are qualitatively robust, (satisfying condition (B) in Section 1I), if:

orI

* *11



k

sup Y I =c*<- (28)

k

The sequences {G1 ,n and {G, } are identical for m=l. For m>l, thcse sequences differ:

For n > m+l, the predictor GI, n is defined in terms of the overlapping sliding blocks of length m

* observations, while the predictor G,. is defined in terms of disjoint blocks of length m

observations.

Asymptotic Perlormance at the Nominal Process

In this part, we focus on the asymptotic mean squared error induced by the sequences

(G In) and {G2nI at the nominal process po. We will first assume that g. is a zero-mean,

i C stationary Gaussian process and evaluate e(;.t, G. *In) where

c(t, Gi ) = e(g, G*) = I imsup e(g., G. ), i=1,2 (29)

Then, for a general class of stationary processes, we will obtain an upper bound of (29), which

will be tight for small F.

Fix an), m_ 1. Given the infinite past, let the nominal, linear, optimal one-step predictor be:

-1

m_*(y__) = d yi (30)

If t, is also Gaussian, then (30) rep:"sents the nominal optimal one-step predictor, given the

irlfinite past. Dcline:

; ,A m in-I

PITu] I g 1Iu n - n, 11 ( ,)L (31)

AT, * k * k-I

q.~IU1 I gm+i[(u 1,O)l-gm~1 I(u1 ,Q1, lkm (32

J'1

-r - 'c ,l,'I'



where g.+, is given by (20), ul = (u .u2 .. uR and (u, ) is given by (27.c).

Then, given the infinite past, the designed robust predictors in (25) and (26) respectively

are:

* -i d.

j am

-1 d i  i

, = -- m 'P ,,,lYi-FI+ 1 (33)

G m y-1 * -1

G2 (Y-) = G2 (Y- ) =

- m d*+kI im+k-I im+k-2
Y' () gm+i[(Yir" ') -gm+'l[I(Yim ,L }

i=-- k=1 ak

-i m d +kI (i+I)m-I

= qm,kYim (34)

i=--- k= ak

where ak are given as in (25), (26) and (y, 0 is defined by (27.c).

Let grim be the process induced by g0 and pm (31). Then, g . is a zero-mean stationary

- process. Let (RPM(t)R(} be the autocorrclations associated with the process j.tP. That is,

Rpm(iO-i) = E[pm(Xiin+I)P(Xjm+i)], -o,<i,j<,0 (35)

Also let,

RxpM (i) = ElX 0P (XiM+I)], i-l (36)

13



Similarly, we define,

R 0-i) = Elq k( + 1)11- 1 ( (j+I)rn-I A l 10 m (7'1n ( in? ).Inl( jin -< 111j< 0

R, (i) QX E n~( (i+I)m-t i38)

We will express c(pt., GjM) in (29), in terms of the quantities in (35)-(38). These quantities

* are non-trivial to obtain, since the mappings pm and qMarc nonlincar. Wc will determine these

quantitics assuming that g.is Gaussian.

Assume that p.o is a Gaussian source, Let,

Z ~ a (M.) X. X.

* =Xa, X (39)
t-1

2 =Xa, M X.-~ (40)

Then, (Z,,) and Z,,) are zero-mean stationary, Gaussian processes. Let f{Rfi()) and {R22(j)) be

the autocorrelations associated with these processes respectively, and let [p,1 0~)), {P22j)) be the

associated correlation coefficients. Then,

A
R1 1(j-i)=E[Z1 Z..J p 1 j-i)R11(0) -<i,j<oo (41)

A A
R, 2(j-i) -E Z2 Z'. I ,()R,,(O) -oo<ij<o (42)

C Let,

14



ww wrwW W .. . .-.... . .. m l mfi-

Rl 2(J-i) = E[Z iZ2 j P 1 12(J-i) JR II (O)R22(0), .oo<i,j<oo (43a)

0

A
R, 1(j-i) = E[Z 2,iZlji _ p21(j-i) /R11 ())R 22(O), -o.<i~j<,, (43b)

2 2

* Also, let R() = 2 = EJ X i ] and

A
R(h(i) = E[XoZ,. I p,,(i) 1R tP), t=1,2; i -1 (43c)

Dcfine:

k

Wk. =1 a In)Xim,-' km, i- 1 (44)

t=1

Then, W 0.i = 0, and for each k>_l, Wk.) is a zero-mcan, stationary Gaussian process. Let,

0 k,lI=0,I... m
Rw (j-i) =EW'ti] -.,<jo (45)

kj E[W kjVI.I,(45

and let,

r R~v (-i)
jk)

if exists

P"00= (R" k()Rv .(0)) 1/2  (46)

* PW- 0, otherwise

Let

R wk(i)= EIX,Wki I, 0_<k_<m; i:5-1 (47)

15



*@ q :() if exists (48).R  , k.k( )] 

(4s

b'Xwk i 0 otherwise

SLct O(x) and ,D(x) respectively be the standard normal density zero mean, unit variance, and

its cumulative distribution function, evaluated at the point x. Also, let (n) (u) be the nth

derivative ofO(x) w.r.t. x, evaluatcd at u. Fix any X>O. Let,

0

u IuIl!
h)(u) =ksgn(u), otherwise (49)

For any or, 02 and p such that o1>0, o,>0 and I pI<1, let us define:

OIIX.c A a 2'(1)( X ) I+(2 2 " - )F (50)

AJ31[ " 1o 2'p] _ AIX,o1,o.p['lt,o 1,l I +

"-+ [c:(I-p2 )liI2 s. F[o1,p,n1'41[X,o2 ,p,n'I[X.,o1,nJ

n=1

(I.2 2 1/2
+ 2 2[° (1-p )] 112lp n [ ° ' '-2 'l" ln (51)

n=2

%,here,

16
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In* A tx ' 1'°2 P = Y .E'i [ I) [ j 1 (52)

C C

1ap =(53)
C C

.1 Fk 1pn =I. ~ 0  n ! (54)

o(i 
(55)

l[X ,G , n lI= J h (x ) x - "  d x
-0 0

and where

2 2 2
0 =0 2(1-p) (5a)

,= 2P (56b)

* Also, let [X,o,,P] be given by the r.h.s. of (51) except that we replace l[X,o1l] with

l[c,,O~i,l , and l[k,o l,n] with I[,,0,n. For 0 = 02 and p=l, we define:

D[X,0110 t ,I =  0IX,O 11 (57)

Notice that the computation of 0 does not involve any series where as for IpI<, 13 and are

given in terms of series. The definition (52) is also consistent with the meaning associated with 0

and P3, (see (B.2) and (1.3) of the proof of Theorem 2.) Using direct but tedious computations,

wc obtain:

17



21 2 -2t t (2k+1)!2-*
1 exp(-k.' a, 1 if n odd, n=2k+1

As iP f ()2 (2k.-2t+l)!t! (58 )t=0_ _ _ '_ "

" 0 ,if n even

Also, if n is even, then lIX,a1 n] = l[oo] =0. Ifn=2k+l, then:

k2 k
* 1I X,ol,2k+l I = -(-)- (k-t+-)

cc 01 ait-4 2

2k
-at 2k+ -

- Va l (X * .Fl(k-t+-)

i= 2 a

k+ I 2k+2 -(1 k aj+

+ "2 o k!.e .. - (59)
-IO j. J!

k+l

2k+2,I[oeoa,2k+l] = -(2t-1) (60)

t=l0
where

x
a 

(61)

We are now ready to obtain C().,Gi.m) in (29), assuming certain conditions. Let N be the

set of nonnegative integers. Let J be the Borel 0-field generated by the discrete topology on N.

Let (NxR, JXB ) be the product space where JXB is the Borel 0-ficld generated by the product

topology on NXR. Let v be the product measure on JXB, product of the counting measure on J

C. and Lebesque measure on B. Define,

11
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C

* A 0 0 An (62)

* where o and Y, are given by (56.a) and (56.b) rcspcctively.

Theorem 2: Let .t be a zero-mcan, stationary Gaussian source with variance a Assume

that (28) holds. Then.

-1 d. -1 -1 d d.
c(g.tt,,G1 )= e(I.to,G, - 2 Rp(i) + "R P 0-i) (63)0 (i) j ( (in) 2

-i in d.m+k-I
"c( .,G2 *in e(go,G2*) ='U22-2 Z y Rx, 0~)

S(in)

i=-k- 1 ak

-1 -I in m dm+k-I djm+l-l

R I "-i (64)
(in) (i) ,kj

i=-o j=--. k=1 1=1 ak a,

where {d,}, a, are given as in (33) and (34), and R p, R ,,, R and R are given by

(35)-(38). If

(
fr(n,x I X,a 1 2,p)dv (65)

exists (i.e. the integral is not of the form -,- in tile sense of Lbesque) for all tuples (X., 2,p)

(. which are he argutenCtts ot1 and of (66) and (67) below, then,.

2

P i (-1 Pl.,, v , ), p...-) , - , < <, (66)

19



R (i) = [Xm,, 4R (0),p 0 1(i)] - [Xc'4R 2 (0),p0 2(i)J is-1 (67)

If (65) exists for all tuples (,ozo 2.p) which are the arguments of 1 and of (68) and (69) below,

then.

R (j-i)=
qrk)

S ( l0s01
= - ) R, ,0,° R 1,_,.,I (0), P" k (j-) (68)

S,L=O

lk.1 5m

--oo<ij<oo

R (i)) PlXk (), P, W (69)

i5 I

Proof: See the Appendix.

Remarks:

* (1) The integral in (65) involves four parameters, X,ala, and p, and its existence is required to

ensure that Fubini's theorem is applicable. By Corollary 2.65 of Ash [21], the integral will

exist if

f I r(n,xf L,o1 ,o 2 ,P)Idx <o (70)

Since,

20



n+1

2 n+l
2 (71)

(n) 2_________

supl (x)I < , n>1, nodd

and since,

x

f- n+l I n+

j n dx 51  n- , n>_l, n odd (72)

n-1- 2 n-I
2 - )!

2

hence,

l v r(n,x I,a 2,P)dx (n+l), n odd (73)

n=l-- n=, N . -

The series in the upper bound of (73) converges if,

1/2

p <(74)

Similarly, summing over even values of n of the series in (70), we arrive at (74). Hence, (74) is a

sufficient condition for the existence of the integral in (65). In this case, e(g.,G i ) can be

approximated by considering only a finite number of terms of all the series of P and 4-

(2) ll61dcr ineqtality gives a simple condition for checking whether the series in the definition

of P or is divergent. Define N, N, as in Lemma I of the Appendix. Then by (B.3) and

i lder,

21
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I P(XO ,3I ,pI I = I E[1h,(N )h,(N,)Il

5 "Elhin(N I Elhx(N 2)1 N

'.. = {01 .,o21/2 0[olln (5

The upper bound o1(75) does not involve any series and can hc easily computcd using (50).

If the series ol i3 diverges, then (75) will not hold. Similarly,

50 _ ( O 1{ 11 1/2 (76)

We will now obtain an upper bound if c(g.'G t ), which is also applicable to non-Gaussian

processes, which does not require any restriction as that in (65), which is easy to compute, and

which is directly related to e(to,m.), where c(I.,mo) is the asymptotic mean squared error at t,
' . n-i

that is induced by the nominal optimal linear predictors mo(yn ). Using the proof of Theorem 3

below an upper bound of e(. ,G *m) can also be obtained in a similar manner. Let,

2

H,,, E[(I X,n I + (in) l-t m(Xm)] (77)
I a ( )I

where

rn rn-I
m " r , (in) ,(m)

J =yJy Ila. yj I <k mand I Z a YI <%m) (78)

j=I j=1

Also, let

I-I

D*= Y Idil (79)

Theorem 3: Let { Xk ___ be a zero-mean, finite variance c , stationary source wih distribution



i . Fix any rn I. Then.

(a) c(l~tG 1 ) = cI.t,G1 ) < (Ie(F.t ,m,)j + D\IIj(0
) 0((80)

II1b'il( ]C(Jto,l)] I + D*NI m) 2 
c (Jt0 ,i]1 (81)

Proof: See the Appendix.

* Remark: For Gaussian sources, if e= 1, then,

u

- 2X,

II 1=2 f (u+ ( )- du (82)

lal1)

For re>l, we obtain an upper bound of f/m which is easy to compute, as follows. By (C.7) in the

Apppendix, we have,:

2 m 4 1/"2 m 1/2

E[X(1-1j ,(X ))]<{E[X,,,1} -{E[I-I -(X )}

2
= (30"{E[ 1-1 1.(xm)] } / 2  t=1,2

SE[ ' Xml' (1-1it .(xm)] < (;{E[ 1-1 it.(X,)]}) '  t=l1,2

Therefore, by (77) and (C.6) in the Appendix, we obtain:

v 1 /2 1/2

4 . 4 2

-< 4n + - { I ~ +I-(1[ }(83)
|lln "42 .. + + + -(VI"(I la(' )l in)l1 -

I am m 02, m

23
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2 (m)
where a tm is the v a riance of ai'XJ. j=1,2.

j=l

IV. BREAKDOWN POINT AND INFLUENCE FUNCTION

In this section, we obtain the breakdown points and the inllucnce functions of the prediction

operations in (29) (rn=l only) and the operations in (30), following the definitions (9)-(16). We

first consider thc case of the pcr-datum outlier model in (6) and the operations in (29) and (30),

for m=l. Then, we consider the case of m>l. It is easy to verify that the breakdown point of the
2

nominal optimal linear predictors in (24) is zero, for any zero-mean, finite variance a , stationary

process, i.. Let 10 1(w) be the influence function of thesc nominal predictors for the

contamination modcl in (6). Then,

-I -1 -1 -I
-,-1

I) (w) = (w -( d,' - 2 d d R (j-i) + 2 dR(i) (84)
i=,- j=.- I =-8

-I

where (d ,) is given by (30) and {R (i)} is the autocorrclation function of the process i

Consider now the predictors in (29) and (30), which are designed assuming that the nominal

process is it° and the level of contamination is e. Asymptotically, these predictors are given by

(33) and (34). Let rn=l. Then (33) and (34) coincide. Let G* denote the asymptotic predictor in

(33) (or (34)) for the case of m=I. Fix any w and let the contaminating process be deterministic

with amplitude w. Let the level of contamination be 6. Then,

*I
c(.tSGw(;*)= c.t 8 l,G1 ) =

24



-1 d
-1 2 2

=E[{X 0-G(Y_))1 8,wl=E[{Xo - -- p(Y))} I'w
0~ a3

- d. -1 -1 d. d.
• a -2 E - .[X P (Y) I &w] + -E[p 1(Y 1)p 1(Y.) I S,w] (85)

T() () ()

i-- a, j=_ j__ a, a,

Now, for any i!-1 and by (6), we have,

E[Xo'pl(Yi) I 5,wl (1-8)E[Xo'p1 (Xi)] + 8E[Xo'p,(w)] (86)

= (1-5)R P (i)

where R (i) is defined by (36). Also, for i=j<-1, we have,

E[pI(Y.)pI(Y)I 5,w] =E[ (pl(Y) 12 15,w = (1-8)E[p(X,)12 + 8EIp 1 (w)

= (1-5)R p(0) + 6[pI(w)]" (87)lp 1

and for i:j

.', Elpl(Yi)p,(Y i)I 8,w] = (1-8)2EjpI(X,)pI(X j)]+ lw]

+ ,5( 1-5) (E [ pI(X,)pl,(w) I + E Ip I(X j)pI(w)j)2 2 2

= ( ) (1 - i)+ ERP( (W)] + 5 [p+(

where IR (j-i)} is defined by (35).

Using (86)-(87), we can determine the breakdown point in (11) of the predictors in (29) (or

(30)), for m= 1, as:

C-1 2;= G.= sup {6: sup e( ta~,G 1 )<_ a (8))
ESUPt (3

Equivalentily,

25
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,d,
Gc. sup 8: (18) P, )8)

-d -d . . -' d.
+ ( 1_{(-8)2R ,j) . } 2( -8) R 0)) (90)

j=- a, a, =-- a,

* Notice that for m= 1, EG. = EG. ((12)).

We now dctcnnine the inllucnce function substituting (86)-(88) in (85). we obtain:

# " (ta ,G *) - (I~1,G *) =

J-1 2 2
S-- E[{Xo-G*(Y_ )) 18,w -E[Xo-G*(X- )I -

S-1 d l

=-2 - . {E[Xop,(Yi) 1S,w ] - E[Xop(X,)I}
(I)i=- I1

-' -1 d. d.

+- , (Ep(Yi)p1 (Y ) I 8,w] - Efp1(X)p(X)i}
(I) (I)

= j= a, a,

-i d. -n d.

-I -1 -i  d.
2 2 2=23 -R (i)'+8 Ip( ) p(w)1 -R (0))

a,--. j=-_ al

d ad

+ .. 18 1P1(w)2 +(-28+8 )R (0-0)) (91)
j= J. - al at

Therefore, the iniluencC Iunction 1(.(w) fOr the designed predictors in (29) (or (30)), for m=], is:

26
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d. d

F -l ,,-ulr --- '"fI -d.-

I ,'2
1 .(w), 2 R ,(i) + ) {p(w)12-R (0))

G(I) P,
a =- a

-I d. d.
I j

-2 - ) -R (j-i) (92)
0(1) (1) P,S=j a1  a1

Notice that for e>0, 1(;.(w) is a bounded and continuous function of w, in contrast to 10,1(w),

in (84). Also, if=), then (92) reduces to (84).

The above exprcssions, (90) and (92), of the breakdown point and the influence function

respectively: requirc the knowledge of {R (i)}i__ and fR,(i))_, If it is also assumed to be
P1 rP 1u-ir I

Gaussian, then we can determine those quantities using Theorem 2, if (65) holds. For non-

Caussian sources, or for Gaussian sources where (65) does not hold, it may not be possible to

determine R P(i)} and ( RxP (i) } analytically.

We now take an alternate approach and determine an upper bound of the influence function

and a lower bound of the breakdown point, for nominal processes that are not necessarily

* Gaussian. We have-

- d.
-1 2 1 21

e(l.tL6 w,G*) = E[(Xo-G*(Y.)) I 8,w] = E[X o - -p(Xi)]"

j _ a(1)

d d

-l d. -l d.

(1) (1)
-I dlqL =-* a, a I-*a

-1 d

+ El. V (p(X,)-p1 (Y,))}2 1 ,w (93)(I)3

Now,

27
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d. - d.

E[[X- - p1(XdI1 -(pj(Xj)-p 1(Yj))1 I 5w)

j- a1  j a1

-~ -i d. -I d.
I I

5= [[o Y -- p1 (X.[ -(lx)P()

a1 -. a

1 d .- d.
!iSs =o y - p 1(X).[ Y -p(X)

*- a 1  j-

- d i 2 1/2 -1 di /

:!5(EX- -p(X)] *1 1 R (01(94)
(1) P1,~

j- al j. at

The last two inequalities of (94) follow respectively by Holder and Minkowaski. Also, by

Minkowaski we have:

-1d.
1 2 1Pr

[E[[ - (p1(Xi)-pl(Y-))) I5,w])-
(1)

j= a,

-1 d.

1/ 2 r

=8-. - 1l(Ep(X)-p(w)lI" (95)

j- 1

There fore.
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-l d. -I d.

E[{ - p(Xi) -p(Y))) i5,w] 5 5( I - 1) () (0) + [p1(w)l 2) (96)
(1) (1)

--- at i-- a,

% ~*1"
Using (93), (94), (96), and Theorem 3, a lower bound FG, of the breakdown point F-,. is

* •obtained as:

-I d.

= sup {3: (5 C mo*) + + 284- 1 1 R (O)14N11, + D* )

- 0 5 < I

-1 d.
+ ( - )2.(R (0)+X) < (Y(7P, (97)~(1)

• , ij-.-* a I

For small c, the lower bound is strictly positive by Theorem 3b. Also, an upper bound IJ.[wI

of the influence function l(.[w in (92) is obtained, using (93), (94), (96), and (80). The bound is

as follows:

2

IG*[WI = 2( c ( ,m0*) + D*- I RP (0)1 + (Rp(0) + [pI(w)](I) ~ [ ()J
N a1  .= a1

% (98)

The upper bound l.[w1 is a bounded function of w, if c>0.

We now consider the case of m > 1, and for the predictors in (30). we determine the

breakdown point nd the influence function assuming that the observation process corresponds to

the m-size (.block) outlier model of (14). Fix any w and let the contaminating process be

deterministic with amplitude w. Let the level of cortamination be 6. Then, by (34) and the

C(- model in (14), and !ollowing the steps (86)-(88), we obtain:
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iM

C(l,,,G 2 )=

,n ( -t 2 m (2 m dRiin (i

(in) Ui%,k

i-- k=l "k

-im m dn+k-I d i 1+
+ ((l-8)Rq (0) + 8(qIw .'qfl[wm1).(

+ ~(ill) (fit) 1kITk

i=- k=I 1=1 a k al

-1 -d in im+k-I djrn+-I -) in in

-{(I-8)R (j-i)+(q,,nk[W Iq,[w 1))" (99)2; Z E 0) (M) .1
i=o j=, k=l 1=1 a'l al

ak a,

In (99). wm is the iength-n vector with all its elcments being w. Also, we have used wm in the

0 conditioning, to indicate that ie contamination model in (14) is used. Using (99), we obtain the

breakdown point F . , (15), and ie influence function I .,. [wl, (16), directly by the definitions
G 2 , (; 2 ,in

below.

.,n M SUP " SUP e(a.w.m,G2 ) 2 0}

G2 .m s (100)

m-1 d im+k
I .,, [w=2 2 2; R ,(i)

G2 ,m (M) qA)

i=- k=t a k

- i m im+kI dim+ 1 l

+ y(i) (m) {(qm'Jwmhq 1 j wml-R (0))

i=- k=1 I=1 ak a,

-1 -1 m m dim+k-1 djm+1-l
- R (j-i) (101)-2 E E y E ' . ,) R,0-0

t=- - - k= I=1 at a,

For non-GJussian sources, an tipper bound of the influence function and a lower bound of

the breakdown point for ni > I and for the block contamination model (14) can be obtained, using
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Theorem 3 and scps similar to those taken to obtain the results for n=l.

For m > 1, for the per-datum outlier model in (6), and lor the predictors in (29) which are

designed assuming the level of contaimination is c, C>O, we have:

e(Ctwt,G t )= [ XoGt*(Y0 *)}+l,w]J

-i d -I - dd.( Y' )i ' ( Y .- J , ( Yl '
=c-2 V - E[OX P, CYi_.,+1)l&w Y+ .in - ,(Yi,T,+.)p, , ( Y  M+,) I 8,w

(in) W )2
i=,-*_ _ am j _,-* j=--- am

(102)

Hence,
b

sup C(t8wI , G ) (103)
w

is continuous in 5 at = 0. Also, if &=0, then ec(I.tIwG ) equals the asymptotic mean squared

error e( t G*) induced by the predictors {G..} at the nominal process R 3. Hence, by the

definition of the breakdown point in (11), the breakdown point of the designed predictors {G.)

that corresponds to the per-datum outlier model in (6), viz. -*. in (11), will be positive if and

only if

. m 2

e(I t,,Gt *) < 02 (104)

Similar conclusions can be drawn for any size (batch) of outliers using the model in (14).

V. NUMERICAL EXAMPLES

Let ;t be a zero-mean, stationary, Gaussian process. Also, let g, bc auto-regressive.

Consider the followi mg representalions of the Inomiinal iproccss t,:
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Nominal Process 1:

xk = 0.7xk- l + w k

Nominal Process 2:

x k = 0.7xk 1 - 0.3xk 2 + w k=.,-,0,1...

Nominal Process 3:

Sk =0.7x k 1 - 0.3x k-2 + 0.2Xk-3 + wk

Nom inal Process 4:

xk = 0.7xk I - 0.3xk-2 + 0.2xk-3 + 0. lxk-4 + 0.05xk-5+W k  k=...,-1,0,1 ....

In all the four processes, {Wk} is a zero-mean, unit variance, i.i.d. Gaussian process, such that WVk
k-1

is independent of {X k- .Wc summarize the results for these processes, corresponding to the

designed predictors in (29) and (30), for different values of m and for different values of c, in the

following tables and ligures.

Tables 1, 2 and Fig. 1, Tables 3-5 and Figs. 2,3; Tables 6-8 and Figs. 4-6; Tables 9-11 and

* Figs. 7-11 correspond respectively to the nominal processes 1,2,3 and 4. Tables 1,3,6 and 9 give

the asymptotic mean squared error (amse) at the nominal process 1,2,3 and 4 respectively, for the

designed predictors in (29), and for different values of e and m. Tables 1,4,7 and 10 give the

6 amse at the nominal process 1,2,3 and 4 respectively, for the predictors in (30), and for different

values of e and m. Tables 2,5,8 and 11 give the breakdown points F* and F* of the predictors in

(30), (and the predictor in (29) for r= 1), for different values of F and m. Figures I to II give the

plots of the influence functions corresponding to the predictors in (30), for different values of E

and m and for all the four nom inal processes.

From the above tables and li'urcs, we make the following observations:

32



(1) When i=! thwn for any e~, thle anise at any of" thle nominal processes 1,2.3, or 4 is the same

Sfor the prediLtk)[s inl (29) and (30), as expected.

(2) If thle nominal process is a pth order, auto-rcgressivc. zero-mean, stationary, Gaussian, then

for both tile predictors in (29) and (30) and for all c values and all m->p. thC amse's at the

nominal process coincide. Also, the breakdown points e V( "",, and tie influence

functions coincide aswel

*(3) For any mi>l1 thle anise at thle nominal process ;.t viz. e(;.yG1 ), i=1,2 converges to

e(f.vrnm*) as e- As c-*1, eq *In ) converges to a Except for thle nominal process 1,

nn
e(;.t),G1 ) first increases with e, exceeds a and then decreases, converging to aY as e---.)I

4 For the nomiinal process 1, c(jI ,G. i ) first increases with F_ exceeds a .then decreases with

2 2
F-, becomes less than aF and agTain it increases, converging to aY as C-41.

(4) For most values of e and m, the predictors tG,,n ) in (30) have smaller amsc's at thle

nominal pro,;css. than the predictors JIG *in . Also, for the predictors th ams atth

* nominal proccss decreases wvith 111; however, not neccessarily in a monotone manner.

i*in 
2

(5) The breakdowkn pints 1C .,n and C , are positive i arid only if e(4t ,G, ) < a.
G, in C i ,n

(6) The breakdown points c .,, coincide for all values of c and m and for aU four nominal

'G2 '"

processes except in the case of the nominal process 3, with m=2 and the nominal process 4

with m=4. In those cases, and as observed by figures 5 and 10, the infuence of the outliers

is not maximum whien iAlso, F- < E
(;;,"m G 'im

0
(7f) Typically, prany t the breakdown point e (31is larger for large m than for small m.

C0

(8) For any ro, starting from zero, tile breakdown point s ,i,, first increases with e, and then

',1,+~ (' ,

it decrcases with c to zero. A plausible explanation is as follows: The breakdown point of

the designed predictors (Gt) is detennined mainly by two factors-, a- (, ) i1,G,), and kin.
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For largeI~ breakdown point, the threshold X inshould be smnall so that thle influencel of thle
2 *In

0 outliers is small, and (3 - e( .t,G, ) should be large so that even in the presence of in),

level of' Contamination 5 such that k6<c .,~ thle quantity G -supe~i. j ) remains
w

positive. In our ease, when v is small, then both c;2)i:i,, and thle threshold X are

largeC. Whon e is large, Ohwn boilh X and ci(~ 2 G *i) are small.ff1 - n

(Q) For any n i! ai td W 0, 1the ililuzICe function 1 G2. 'M Iw is a decreasing function of E. Also,

0
for any rn !l and c>0. the influenice function is a hounded and continuous function of w.

For e-O, the influence function is not hounded.

(10) For the designed predictors in (30), the influene functions I .., [w] are not always

monotically increasing for positive w (see Figures 5,8,9 and 10). This is because the

predictors G, lw ),when treated as functions of w only, are not monotonically increasing~

* wit h w.
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VI. APPENDIX

n-I n-1
Proof of Theor-m 1: Take any contaminating density h 1(y I ). Let f0(xWy1  be thie

density of (X, X Let f,, ,yn-) be the joint density of X, and Y n-I. Then,

n- nI n-I(

n-I n-I
Now, for any ev )and any h1,(y, ), we have

EX_ n-1),2 , n-2 n- n-1

f[f[X"_g,'(yn-l)1f(% nl)xI'y-I) ynl (A.3)

n-I n-I n-I n-I
By (A.3), fIOr any given "." Il te op1,l g.,*(y I)is: g1*(y1  ) =El Xn I y Il

n-I n-I
where the conditional density ( IV~ is used in evaluating EI XI y . Also,

maximizino (A.3) over h -is) qivln to ma~ximizing it over oF (A.1 ).

n-I 2
inf Ef{X,~-g,(y 1

Ini-

= fc[r 2 2 1 n-I I n-I x',~ n-I d n-I

-. n- 12 1- n-Il

f( Jfx.f( -Y 1  )d (f(y1  )d y

C35



(T -JI dy I
f(y1 I

2y-1 Xf(.Iy )dxj,-1 -f 0- n-
(T f n- y

_),yn-I )r ( n-I),2

(5 21 J n-Idy (A.4)
* f(y I)

Therefore, our objective now is

n-I~ t/ Y 1 ~\ 1 - n-I
I "v inf j n-i - dy1  (A.5)

-n I

where f(y I is of the formn (A.2), with constraints

,n-1)>- n-I
a. _t1  -(-)f~y y (A.6)

* . f(y nI )d yn-I I (A.7)

* We will use the Lagrang~e mul tiplier technique of the calculus of variations to deteminine I'*.

The La,,rariee ULictiolidi wil Iout the constraint (A.6) is

n-I n-I 2

J(f*, ~ f 0(y dy1,,( n- nx J I*y 1)+ (yn'fldy n-IAX

f. f*(,,n 1) + 6P(yn- y *y,)+8)1)dI(.9

where a is the Lzigrange multiplier. hlence

Cn
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W ')8 6=0

n-I n--

*p V p JP(Y1  dy1 n- 0 (A.9)

By a fundamental thcorcrn of the variational calculus,

n-1 n-I
( -C)f(y II )n(V I

o r

kn-I

By (A.l10) and the constraint (A.6), we have

n-In-I1) n-I
C(1-tC)ffy )Y * f(y 1  =(1-c-)f 0)(y 1n-In-1 lf0'1 )

I .(Vn-I

(A.] 1)

IL-

', n-I

Cn-I I n-1

n-1
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or

Im~v~ >X (A. 12)

I [k.nce. by (A. Ii I and (A. 12)

n-I

* ) l-F) f " )nx1 (A. 13)

The positive constant Xn-I is chosen so th- 1 .*y )

The optimal predictor gn*(yn1  ) corresponds to f*.

*( n-I n- I I-
*1  ) = E[X~ y1  j = fx,*(xI y1  )dxr

n-I
XII.* Xll\, )d Y

*(y n-)

I

n-I

o1cry )y )

f* (y 



- ~ ,,Y (A. 14) - S * a

m
I

I

m,(Y I) o rwis(A.14)

P"~n- I , I )

Proof of Theorem 2: The proof is based on. the following lemma.

Lemma 1: Let N1 and N, be two jointly nomial random variables with mean zero and variances

• a0, (, respectively. Let E[N 1N,] = po ,. For any X>O, let

h.(u) = u'min( 1, - (13.!)
,, lul

Assume the integral of (05) exists for the tuplC ,.a.a ,o.p). Thecn.

El.N)" =0[.i I (B.2)

E[1(N1)h.N2)J = [.,a,a,pJ (B.3)

EIN'h}(N,)] = [ .cv, 2.p] (B.4)

where 0,3. and are defined in Section 111.

Proof of the Lemma: (B.2) follows by direct computations. Define 0 , , as in (56). Then,

a1  (B.5)

Als-.jh.( N, )zNzqi = f hx(x)E~h\(N,) N1 = x] - dx

Also,
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EjIQ N,)N=x)=aCL4YC [YcX4]]

+ (y x.))~ (c~~lL- (B.6)
TC

8B' Tay'lor's thoovern,

01

9 n
00 n____ (13.7)

'- n! L cix ~ X or4

C C C

n

., (n-I n

C n!

+ 2(, ( )- - x '=or- (B.8)

1=1 5C (7C 1!

SubsitutngB.7), (B.8) in (13.6) and inl turn (13.6) in (B.5). we get the desired results (B.3)

usinig the Fubini'>. thmorem, whvlich is applicable if the integral of (65) exists. Similarly, assuming

this inteval. C.isL's, we cc'. (13 .41 usium. (8.~dF)

*,nn

Sina sini ifar rimainc r. Ilie asYIIII)toIIC ficaill quredI rrC( y at the noni inal source ltis
C
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C(.L.,G1 )= El (X,-G1 (X-)} I = &Y-2EfX,,G1 (X 1)I

+ El G 11( ( 1)121 (B3.9)

By the definition of G in (33),

e~lt.G *n 2 2 E(Xp I[X .II
(I n)

(I d
L=--

[am , j

The result in (63) follows from (B.10) and the definitions in (35) and (36).

Now, by tiez definitions of pin in (31), h % in (B.1), and Z I1 in (39), Z2,i in (40), and the

definition of'g~~ in (2-0), we get

R .(0) = E (p(X. 1 m ))2

*IT i-I 2

=E(h X (ZI1 ) - 11% (Z2.))}

2f T

22

22

E -I ( h 1 -2 (Z 1 h (Z21) (B. 11)

t=41

R Lv=EplX 1 1 . 1 p X



RP (i) =E[XO Pm(X.+)I

Thc desi red results, (61 )-(67), follow d Irectly from (B. I1 )-(B 1313), Lcrnma 1, and (57).

Prool'of Theorem 3:

(a) By thc Minkowaski inequaIZlity and the definition of m.* in (30), we have:

= I E (X0j-rn.(X_,)) + (m. (X_) GIC1  (X 0l)1)112

-! 2 1/2 -1I m -1 2 1/
(E[X 0-nim*(X-)I +f E[m .*(X- )-G, (X)] I

1/2

2 I
=' v/O1e( 1 0Il" + 1 d i(X - I(C.l1)

By the defini ion of p, (31) and Jt n (78)

m (in)p(1)u.a i f umeJ (.

and since I p,, I is bounded from above by 2 , hence

in -rni) ,if x Elm
p <xjji+

ain 2X il(C.3)

in I +. , otherwvise

Therefore. by (C'. I) (C.31 and the Mbikowaski inequalitv, we obtain,
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-11 /2X

E Yd X,- (M)

'2~~Is

- -1 d{ 1  p m(X i.,1)

_ - d -l E X . - - -A- (in )

-n 2Im 1 /2

-< Idi { ( X ... ~ ~I + - I l-lf,( i O )

(, BC.4

il lli = 
(C 5

(79). we conclude:

11 =_- . ,, ., E+ X I+,,,-111 , i)

(h) By (a), it suffices to prove that

! inll (n

jun1 =, ( (C.5)

By the definition olJ m in (78), we have,

In 2 i
ti = E[(IX I + ~ )(I-1 (Xt ))

in (,n)

I

I(

**1



+ A + + 2X 2) (.6<_E(I I+ m) l-j"Xl))j+E[(1X 1 +- )(I-1j,,X, )) (C.6)

a "Ia 1 1 a I
in Ii

where

* inlin rn (iT1)

Jl Yl j y j (C.7a)
j~ I

m-I
m m (m)yj

J2 = { l vi <"I (C.7b)

j=l

Now, as -- O, m..oo and hcnce, 1-1, ,(xin) dccreases to zero as E-0 for all x"'. Since X
ii Iin

has finite variance, hence by the dominated convergence theorem we have:

Iim EX ( -1 ',(X , 0C.)

0z4
in

Also. by the dclinilion of'J in (C.7a), wC conic!lIde,

III) 2 i

* ,E[I-1 1) = E(X))

in
mfIy .(,n). 12.(1 j m

qb 3=1

i=

* Therelorc, as in (C.8), we have,

4
IT

lra -' 2 I-a III ) = 0 (C. 10)

Similarily,
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4L-

Ia ima I-l'XX(- X

" .-l

4 I|i

,,",)lit~ --I , iE IX nI(-jX ))]1

Hence, by (C.8). (C. I0), and (C. 11), the lirst term on the right of (C.6) goes to zero as

By a similar analysis, the second tem1 on the tight of (C.6) goes to zero as r-,O and thcreforc,

(C.5) holds.

'p.,

'p.

4-
9

*1

5'

C- r r ,,p ,.•",

5 -,~ '-+ +~~. - - J'
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E: III=I w=2 n=3 n=4 m=5 m=6

0.00 l .01 I.oll 101 .LO 1.0 11 1011 .Ol1
0.0() 1 1.(49 1.049 1.049 1.(049 1.049 1.049

0.005 1.115 1.110i 1.115 1.115 1.115 1.115

0.01.11 1.10 1.1__1 _ 1.161 .161 1.101 ,

0.125 I 1.257 1.57 1.257 1.257 1.257 1.257

(75 1.157 1.357 1.357 1.357 1.357 1.357
____ ____ _______ 1.3 1.435 _ _ _

0.75 1 1.435 1.435 1.435 1.435 1.435
________ 5" __ _ _ _ __ _ _' 1.523 1.5-,

010 1.523 - - 1. 523 _ 1.523 1.523 1.523

(.125 1,627 1.627 1.627 _ 1.627 1.627 1.027

0.15 1.739 L.739 1-739 1.739 1.7-39 1.739

0.20 1.957 f 1.957 1.957 1.957 1.957 1.957

0.30 2.2 ""2.221 2.222 1 2.2 21 21221 2.221

0.50 2.009 2.069 . 2.069 2.069 2.069
* I "TI I

0.7(0 1.782 1.782 1.782 1.782 1.782 1.782

0 ] 1.834 1.834 I1.834 1.814 1.834 1.83-1

1 1 1.947 .947 I.')47 1.947 1.47i

"F.!C I.. Asyript(Lc nse,c(It ,G ") in (63) of the predictors in0 I
(2' t the nonminal process I. For this process
C(. G 1 = C(. .G )V , Vmn. Also. c(IL ,n1 1.00 and the

• ( 1 o "2 0 0

ionuimal process v an ice. (5 = 1.9608.
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Ii " 'x 1 n=1 r n=2 m=3 m =4 m=5 m=6

rn
000___ .086i3 .086._ ____ .0,863 .08.063 .0863

0.105 .1584 .1i .I.584 15 .1584 .154

0. 1 .1803 .1803 .1803 .1803 .1803 .1803

0.025 .2137 .2137 .2137 .2137 .2137 I .2137

0.015 .2432 .2432 .2432 .2432 .2432 .2432

0.075 .2595 .2595 59 5 .95 .2595 .2595

V0.10 .2594 .259 4 .2594 .2594 .2594 .2594

0.125 .2387 .2387 .2387 .2387 .2387 .2387

0.15 .1937 .1937 .1937 .1937 .1937 .1937

0.20) .0055 .0055 .0055 .0055 .0055 .0055

0.3010 0 0 0 0
050 0 0 0 0 0 0

* 0.0 .7535 .7535 .7535 .7535 .7535 .7535

0 .9536 .9536 .9536 .9536 .9536 .9536

""299 .9956 .9956 .9956 . 996] i957 .9956

T_!c 2: Breakdown point C .,,n in (,15) of the predictors in

(00)) and for the nominal process 1. For this process,
E I Ve, Vni.

22
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11=1 mi=2 m=3 n=4 Im=5- m=6_

0.0001 .1.011 1.209 1.209 1.209 1.209 1.2(Y)
0.00 1 1.051 1.236 1.236 1.236 1.236 1.23-6

*0.005 1.133 1.288 1.288 1.288 1.288 1.2."S

ROI__ 1.196 1.327 1.327 1.327 1.327 1.2

0.025 1.326 1.407 1.407 1.407 1.407 1.407

0.05 1.471 1.503 1 1.503 1. 3 1.50)3 1.50)3

0.075 1.575 1 1 1.571. 158 1. 5 7S 1.578
______,,___ 1.78 1.57 .539___

0.1(0 1.654 1.639 1.639 1.639 1.639 1.639

0.125 1,715 1.60() 1.690 1.690 1.69) 1.690[ I
0.15 1.763 1.733 1.733 1.733 1.733 1.733

0.20 1.828 1.797 1.797 "1.797 1.797 1.797

0.30 1.833 1.866 1.866 1.866 1.866 1.866
0.50 _______._5 185

(_.5() 1.842 1.859 1.859 !.859 1.859 1.859

* 0.7() 1.727 1.748 1.748 1.748 1.748 1.748

0.90 1.602 1.608 1.608 1 1.608 1.608 1.608

0.99 1.553 1 1.553 . 1.553 1.553 1.553

1ht, 3 Asymptotic mse e(j.t ,G'") in (63) of the predictors in
0 1

(29 at the nominal process 2. IlCncC, c( t ,m ) = 1.00 and the
20 (

noillITal [,roccss variance, C = 1.5476.
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S.,

E rn=1 m=2 I m=3 rn=4 m=. m=6

0.(hW01 1.011 1 00 1.006 1.006 1.006 1 1.006{}. V ,{ I 1. 1 .) 61 .0

0.001 1.051 1 029 1.029 1.029 1.029 1.029

. T 1.133 1.074 1.074 1.074 1.074 1.074

RN0.{} 1.196 1.109 1.109 1.1}9 1.109 1.1()9

1)l. 5 1 .326 1.185 , 1.185 1.185 1.185 1.185

0.05 . 471 1.278 11.278 1.78 1.278 1.278

007 1.575 1.31 1.353 1.353 1 1.353 1.353

0.1(1 1.654 1.414 1.414 1.414 1.414

0.1. 1.715 I4.,o) 1.465 1.465 1.465 1.405

0.15 1.763 1.508 1.508 1.508 1.508 1.508

(.2{0 1.828 1.575 1.575 1.575 1.575 1.575

(-1.0 1.883 1.653. 65653 1.653 1.053 1.653

1 0.50 1.842 1.685 1.685 1.685 1.685 1.685

0.70 1.727 1.642 1.642 1.642 1.642 1.642

().90 1.6{}2 1.577 1.577 1.577 1.577 1.577

1.99 1.553 1.550 1.550 1.550 1.550 1.550
ft .

ia!! : 2: Asymptotic inse, C( t ,G r) in (64) of the predictors

ii {.2 at the monial process 2. llere, c( t , )= 1.00 and the

'::iul process variance c = 1.5476.

(.
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Iim=I ni=2 i m=3 m=4 m=5 m=6

Oi-l . 0862 .0862 .0862 .0862 .0862

0.00 51 ,0741 .1202 .1202 .1202 .1202 .1202

0. 05 .0894 .1561 .1561 .1561 .1561 .1561

0.01 .0922 .1747 .1747 .1747 .1747 .1747

0. 025 .OS03 .1974 .1974 .1974 .1974 .1974

0.()5 .03() .2009 .2009 .2009 .2009 .2009

0.)75 0 1856 1856 .1856 .1856 .1856

0.10 (1 .157, .1578 .1578 .1578 1578

(. 0 .1192 .1192 .1192 .1192 .1192

0.15 0 .0693 .0693 .0693 .0693 .0693

0.3(0 (1 0 0

0.5() 0 0 1 0 0

0.70 0 0 0 0 0 0
)0

0.99 0 0 0 0 0 0

Table 5: Breakdown point c in (15) of the predictors in
G "~

0t)) and for the nonminal proccss 2. For this process.

7 v V', \'ill.
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.4C,

E: m=1 n1=2 rn=3 m=4 m=5 m=6

0.000,1__ 1.012 .1.083 1.233 1.233 1.233 1.233

01.00(11 1.(054 1.117 1.264 1.4 1.64 1.264

0.0015 1 .139 1.195 1.325 1.325 1.325 1.325

0.01 1.203 1.237 1.370 1.370 1.370 1.370

0).o25 1.333 1.345 1.461 1.461 1.461 1.461

-0.(s15 482 1.469 1.568 1.568 1.568 1.568

0.075 1.593 1.561 1.649 1.619 1.649 1.649
1" j 0.075 1.59 (33 -1 1 .1

_W__()_ .678 1.633 1.716 1.716 1.716 K. 716
, 1.

0 ).125 1.745 1.691 1.771 1.771 1.771 1771

0p.15 1.799) 1.737 1.816 1.816 1.816 1.816

0.20 1.874 1.805 1.885 1.885 1 .S85 1.885

0.30 1.942 1.874 j1.957 1.957 1.957 1.957

0.50 1.908 1.875 1 1.938 1.938 1.938 1.938

0.70 1.786 1.786 1.811 1.811 1.811 1.911

O.' 1.650 1.653 1.657 1.657 1.657

(i)9 1.596 1.596 1.597 1.597 1.597 1 1.597

FTnle 6: As nlptoIic nise, c(t ,G ) in (63) of [hc predicmors
o 1

in ()at dihe nominal proccss 3. Hcrc c.t ,r = 1 .X) and lic
"I (I 0

_:al proccss vatiance, (I = 1.5t)( ) .
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Ili1= I 111=2 f13 mi=4 m=i5 m=l6

1.1 1.057 1.007 1.007 1.007 I1.007

0.00! 105 1.05- 4 l0S4 1.031 1031 1.031

0.0045 1.139 1.139 10S .7 1.078 1.078 _____ _____

o((1 1.203 1.181 ] 1.115 1 ,1115 1.115 1.115

0.025 1. 333 1.271__ 1.193 193 1.193 I1.193

0-05l 1. 482 1.37S, 29 1.291 1. 291 1.291

().()75 1.593 1.461 1.370 1.370 1.370) 1.7

(10 1.7811.52S 1.435 _______ ___1.435 1.435 I1.435
1125 .45 1.583_ L.491 1.491 1.491 j1.49!1

0.15 1.799 1.629 j1. 5 -1 1538 1.5 38 1.538

L2 S .74 1l.60)8 1.611 L.61 1 1611 11.6!!
0.3(4 11.942 1. 7 76 1. 69 S 1.008 j1.698 J1.698
)4.50) 1.908 1.799 1.736 1.736 1.736 1.736

(4.71) 1.786 .1734 1.091 1.691 1.691 1.691

K~0 1.650 T1.636 1.622 1.I622 1.62 .2 2

09 1.595 1.5%6 1.594 1.594. 1 .59-41.4

Tj~hl 7: Asym ptot ic m1SC, eq G. .G in 1.64) of thc predictors

in4 i3( , ) i the nomlinlI piocess 3. 1 lere.c,ii 4 m 100 and

Cl 1.5909.
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C

_ n=l m=2 n1=3 m=4 m=5 m=6

0.0001 .0524 .0975 .0862 .0862 .0862 .0862
.1556

0.01 .0712 .1314 .1203 .1203 .1203 .1203
.2036

1 0.005 0.862 .1648 .1565 .1565 1565 .1565
.2474

0.01 .0900 .1800 .1756 .1756 .1756 .1756
.2667

0.025 .0824 .1947 .1999 .1999 .1999 .1999
_______ ______ .2832 ____ _ _ _

* 0.05 .0479 .1795 .2061 .2061 .2061 .2061
.2677 1

0.075 0 .1514 .1934 .1934 .1934 j .1934

(0 C) .0955 .1684 .1684 .1684 .1684
_ _ _ .1500 6

0.125 0 .0170 .1326 .1326 .1326 .1326
.0280

0.15 0 0 .0858 .0858 .0858 .0858
* • 0.20 0 0 0 0 0 0

S0.3(0 0 0 0 0 0 0

0.50 0 0 0 0 0 0

0.70 0 0 0 0 0

0.90 0 0 0 0

0.99 0 ) C 0 0 0

Tahle : Breakdown point E , in (15) of the predictors in
G ,

(30 and lbr the nominal process _3. For this process,
C , and the lo, cr value is .

-2
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*.m m=l m=2 m=3 m=4 m=5 mn=6

0.0001 1.014 1.072 1.265 1.206 1.194 1.194

0.{}} 1.062 I.ll? 1.304 1.250 1.240 1.240

0.005 I 1.1,' ) 1.375 1.331 1.323 1.323

0.02 1.223 1.249 1.426 1.388 1.381 1.381

• (,.02_5 1.363 1.372 1. , 2 1.501 1.49}6 1.496

0.05 1.532 1.5__2 1.648 1.630 1.627 I1.627

0.075 1.665 1.640 1.747 1.735 1.734 1.734

0.10 1.775 1.737 1.835 1.833 1.833 1.833

(1.125 I 066 1.819 1.917 1.924 1.927 1.927

0.15 1.943 1.887 1.991 2.010 2.C15 2.015

0.20 2.5S . 2.114 2.155 2.164 2.164

13 12.1 2 2.110 _.2.. 2.324 2.338 2.338

0.50 2.192 2.143 2.241 2.291 2.302 2.302

{0.70 2.070 2.057 2.070 2.078 2.080 2.080

.09 1.920 1.921 1.9(09 1.904 1.903 1.903

0.9) 1..860 1.80 59 1.858 1.858 1.858

Tah!," 9: Asymptotic rse. c t ,GIm) in (63) of the predictors
0 1

in (29) at the nominal pr{,ccss -1. 1icrc. c(i.t ,m') = 1.00 and the
0 0

nominal procc, vanancc, a = 1.85-43.
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\ rn = I 1=2 t=3 tu=4 m=5 m=6

1.014 Ii 1,130 LO 1.O, 2(.0 .(0l

•0 0( f)1 04 1I( .2 1) 1.01() 1.01()
%" I

0.001 1.062 1.162 I .0()50 1.034 1.044 I.(W4

0.005 1.155 .1222 1.105 1.095 1.105 1.105

0.()1 1.223 1.269 1.146 1.138 1.148 1.148

0.025 1.363 1.367 1.234 1.229 1.238 1.238

0.05 1.532 1.491 1.3.44 1.341 1.346 1.346

().J,75 1.665 1.593 1.439 1.436 1.438 1.438
____ ___I _ I __ _ _ _ _ _ _

0.10 1.775 1.679 1.528 1.527 1.526 1.526

0.125 1.860 1.754 1.010 1.615 1.612 1.612

0.15 1.943 1.818 I 1.685 1.697 1.692 1.692

2 2.058 1.920 1.813 1.840 1.832 1.832

0.30 2.182 2.044 1.972 2.016 2.00() I 2.000

0.51) 2.192 2.113 2.017 X X X

0.70 2.070 2.065 1.935 X X X

0___ 1.920 1.928 .1869 X X__

( ,99 1.860 I.8(1 1.85 5 X 3 x I A

Table 1M: Asymptotic nisc. c(.t ,G ) in (64) of the predictorso 2
. in 10 1 at the nominal proccss 4. 1 Icr, c( 0.t m ) = 1.00 and

= 1.8543. The symbol X denotcs that c(L.t .6 ) could not he

computed becatuse hc condition in (65) is not satislied.
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* m=l nl=2 ni=3 m=4 n=5 mn=6

1 .030 .0497 .0862 .0949 .0863 .0863
.1511

o 0.(011 .0867 .0707 .1184 35 .124 .124

0.C05 .1094 .0939 .1532 .1725 .1580 .1580
___ _ .2615

(".(1 .1196 .1060 .1726 .1955 .1793 .1793
. 1 .2924

0.025 .1274 .1228 .2012 .2276 .2112 .2112
.3366

04.2200 .2499 .2334 .2334
____I___ ___ ___ .3052

0.075 .0859 .1144 .2231 .2554 .2379 .2379L t
L 0.10 .0446 .0933 .2149 .2424 .2280 .2280

~.3551
0. 125 0 .0641 .1962 .2173 .2039 .20391- .3210
0.15 0 .0275 .1.65 .1755 .1648 .1648I .2635

0.20 .0647 .0253 I .0346 .0346

0.30 0 0 0 0

* 0.50 0 0 0 X X x

-0901 0 _______ _______ ______

j 0 0 X X

, .090 I0 0 0 X X X

[qI0(},9 o1€ j 1

Tahle I1: Breakdown point C , in (15) of the predictor in
qC "  ,m

(31} and for the nominal process 4. For this process,

= . .V, Vm, m=14. For vn=4, the upper value is

V and thcmlcwr value ise
C G m ,n
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School of Engineering and Applied Science
ql The University of Virginia's School of Engineering and Applied Science has an undergraduate

enrollment of approximately 1,500 students with a graduate enrollment of approximately 560. There
ar 150 ;ciymmesamaotyof whom conduct research in addition to teaching.

i Research is a vital part of the educational program and interests parallel academic specialties.
• These range from the classical engineering disciplines of Chemical, Civil, Electrical, and Mechanical

" and Aerospace to newer, more specialized fields of Biomedical Engineering, Systems Engineering,
O Materials Science, Nuclear Engineering and Engineering Physics, Applied Mathematics and Computer

Science. Within these disciplines there are well equipped laboratories for conducting highly specialized
• research. All departments offer the doctorate; Biomedical and Materials Science grant only graduate
, degrees. In addition, courses in the humanities are offered within the School.

, The University of Virginia (which includes approximately 2,000 faculty and a total of full-time
student enrollment of about 16,400), also off ers professional degrees under the schools of Architecture,

• Law, Medicine, Nursing, Commerce, Business Administration, and Education. In addition, the College
,r; of Arts and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant

to the engineering research program. The School of Engineering and Applied Science is an integral
part of this University community which provides opportunities for interdisciplinary work in pursuit
of the basic goals of education, research, and public service.
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